Alle Artikel in: Astronomie

Ein schwarzer Kreis im schwarzen Nichts, aber sich abzeichnend durch viele rote Linien, die rundum reichen und davor als einzelner Strom entlangführen.

Ein Schwarzes Loch im Zentrum: der etwas andere Quasi-Stern

Sterne kennen wir. Sterne sind runde, heiße und leuchtende Gaskugeln, es gibt zu Milliarden und Abermilliarden im Universum, angetrieben von der Kernfusion in ihrem Inneren. Aber was soll ein Quasi-Stern sein?

Diese hoch exotischen Himmelskörper betreiben in ihrem Inneren keine Kernfusion. Dafür sind sie so groß wie unser ganzes Sonnensystem – und in ihrer Mitte lauert ein Schwarzes Loch. Und eigentlich haben sie mit Sternen an sich überhaupt nichts zu tun. Wenn es sie wirklich gäbe, sähen wohl aber so aus wie ein viel zu groß geratener, rötlicher Riesenstern.

Gefunden hat bislang noch niemand einen dieser Quasi-Sterne. In dieser Folge von AstroGeo erzählt Franzi trotzdem ihre Geschichte: Sie könnten in der Frühzeit des Universums dafür gesorgt haben, dass die supermassereichen Schwarzen Löcher, die heutzutage im Zentrum fast aller Galaxien existieren, überhaupt erst so supermassereich werden konnten.

Grafik einer Spiralgalaxie, die von einer sehr diffusen, bläulichen Wolke durchsetzt ist.

Dunkle Materie – wo sind die WIMPs?

Dunkle Materie muss es geben – jene unsichtbare Materie, die auch unsere Galaxie vor dem Auseinanderfliegen bewahrt. Bis zu 85 Prozent aller Materie in unserem Universum sollte aus Dunkler Materie bestehen. Aber wo ist sie? Und was ist sie? Als guter Kandidat galten und gelten hypothetische Teilchen namens WIMP (weakly interacting massive particles). Stimmt das, wäre unsere ganze Galaxie in einen Nebel aus jenen zwar massereichen, aber extrem flüchtigen Teilchen regelrecht eingebettet. Auch durch die Erde würden in jedem Moment von Billionen von WIMPs fliegen.

Zwar gelten die WIMPs als guter Kandidat für die so dringend gesuchten Materieteilchen – aber ihr Nachweis auf der Erde gestaltet sich als schwierig. Oder doch nicht? Es gibt da zumindest ein Experiment in einem italienischen Labor, rund 1400 Meter unter der Erde, das behauptet: Wir haben die WIMPs gefunden! Und das schon seit über 25 Jahren!

Franzi erzählt Karl die Geschichte des Dramas um das DAMA-Experiment: eine Geschichte vom Suchen und, nun ja, Nicht-Finden der Dunklen Materie – eine Erfolgsgeschichte der wissenschaftlichen Methode oder doch eher ein Trauerspiel?

Ein Planet mit Atmosphäre, auf dem viele runde, gelblich glimmende Einschlagskrater und Aschewolken zu sehen sind. Im All außen herum bewegen sich Gesteinsbrocken.

Nizza-Modell: Chaos zwischen jungen Planeten

Unser kosmischer Vorgarten besteht aus Himmelskörpern, die kaum unterschiedlicher sein könnten: Da sind verschieden große Planeten und ihre Monde, von denen manche brav auf regulären und andere auf äußerst verschrobenen Bahnen kreisen. Da sind auch Asteroiden, die in Gürteln oder auf kräftefreien Punkten der Planetenbahnen herumlungern.

Karl erzählt in dieser Folge davon, wie Planeten, Monde, Asteroiden, Kometen und sonstiger planetarer Schutt an ihren heutigen Platz gekommen sind. Es geht um das Nizza-Modell, eine Simulation des Planetensystems vor rund 3,9 Milliarden Jahren, als die großen Gasplaneten sich gegenseitig in die Quere kamen und wahrscheinlich eine gewaltige Katastrophe auslösten. Dabei wurde das Planetensystem einmal durchgerührt und es entstanden gewaltige Einschlagskrater. Möglicherweise tauschten sogar einzelne Planeten ihre Plätze.

Am Ende sah es völlig anders aus als zuvor – unser kosmischer Vorgarten hatte seine heutige Form angenommen. Obwohl es einige Zweifel gibt – bis heute passt das Nizza-Modell recht gut zu unserem Sonnensystem.

Einige zusammengewürfelte Galaxien

Dunkle Materie: Warum wir nicht auseinanderfliegen

Inzwischen hat man sich fast an den Gedanken gewöhnt, dass unser Universum voll Dunkler Materie ist. Die können wir zwar nicht sehen, aber sie sorgt dafür, dass unsere Galaxienhaufen und auch unsere eigene Galaxie nicht auseinanderfliegen. Tatsächlich ist die Dunkle Materie für uns überlebenswichtig. Da verzeiht man ihr es gerne, dass sie wohl 84 Prozent aller Materie im Universum ausmacht.

Seit Jahrzehnten suchen Wissenschaftlerinnen und Wissenschaftler fieberhaft nach der Dunklen Materie – was gar so einfach ist, wenn man bedenkt, dass niemand sie sehen kann und sie auch nicht mit sichtbarer Materie wechselwirkt, aus der wir und alles um uns herum besteht. Aber, da sind Forschende fast sicher: Es muss sie einfach geben, die Dunkle Materie.

Aber warum muss es Dunkle Materie in unserem Universum geben? In dieser Folge von AstroGeo erzählt Franzi den Anfang einer Geschichte: die der Entdeckung der Dunklen Materie. Sie fängt mit dem Coma-Galaxienhaufen an, dessen Galaxien zu schnell unterwegs sind, hin zu Galaxien, die zu schnell rotieren und eigentlich auseinanderfliegen sollten. Doch schließlich war es die Kosmologie und der Wunsch nach einem ganz bestimmten Universum, welche der Dunklen Materie zu ihrem Durchbruch auf der wissenschaftlichen „Most-Wanted“-Liste verhalfen.

Vor schwarzem Grund eine dunkelblau-durchscheinende Blase mit einigen hellblauen wabernden Wolken am Rand.

Vakuumzerfall: Wenn das Universum sich auflöst

Es gibt Menschen, die sorgen sich vor dem Vakuumzerfall unseres Universums. Doch die gute Nachricht ist: Es spricht nicht viel für diese Art des Weltuntergangs. Und selbst wenn, könnten wir sowieso nichts dagegen unternehmen.

Franzi erzählt Karl in dieser Ausgabe des AstroGeo Podcasts die Geschichte des ultimativen apokalyptischen Szenarios: dem Vakuumzerfall. Tritt dieser ein, würde sich im Universum mit Lichtgeschwindigkeit eine Blase der Zerstörung ausbreiten und alles zerstören, was ihr in den Weg kommt. Was so schön schaurig klingt und leider nach hochkomplexer Quantenfeldtheorie und einer Menge Teilchenphysik müffelt, ist tatsächlich gar nicht komplett abwegig: Manche Wissenschaftlerinnen und Wissenschaftler sind tatsächlich der Meinung, dass unser Universum nur „metastabil“ sei. Das soll heißen: Es ist zwar nicht sehr wahrscheinlich, dass unser Universum übermorgen ausgelöscht wird, aber irgendwann in einer paar Myriaden Jahren könnte es unweigerlich soweit sein.

Wem jetzt angst und bange wird, für die gibt es eine noch bessere Nachricht: Die Wissenschaft ist sich überhaupt nicht einig, ob es überhaupt irgendwann soweit sein wird. Denn was uns das Szenario des Vakuumzerfalls eigentlich erzählt, ist eine Geschichte darüber, dass wir noch lange nicht verstanden haben, was die Welt im Innersten zusammenhält.

Zwei schwarze Löcher, die wirklich schwarz und nah beieinander sind. Der Sternenhintergrund um sie herum wirkt verquirlt.

Schwarze Löcher: Wenn die Raumzeit zu stark zittert

Mit einem Happs ist alles im Schlund: Wenn zwei Schwarze Löcher miteinander verschmelzen, ist das ein gewaltiges kosmisches Ereignis, das die ganze Raumzeit erbeben lässt. Physikerinnen und Physiker freuen sich dann über die dabei entstehen Gravitationswellen, jenes Zittern der Raumzeit, das erstmals 2015 mit dem Gravitationswellendetektor LIGO gemessen wurde. Inzwischen ist die Entdeckung von solchen Verschmelzungen fast Routine geworden, über 90 Ereignisse zählt der dritte Gravitationswellenkatalog.

Doch schon das erste entdeckte Gravitationswellensignal namens GW150904 gab Wissenschaftlerinnen und Wissenschaftlern mehrere Rätsel auf: Die beiden Schwarzen Löcher, die da miteinander verschmolzen, waren eigentlich viel zu massereich, um existieren zu dürfen. Und kaum hatte man sich darüber Gedanken gemacht, gab es schon das nächste Problem: Wie schafft es dieses kompakte Doppelsystem, sich überhaupt nahe genug zu kommen, um miteinander zu verschmelzen, ohne sich vorher schon zu zerstören? Und dazu müsste dieser kosmische Annäherungsversuch eigentlich länger brauchen, als das Universum alt ist.

Franzi erzählt Karl in dieser Podcast-Folge die Geschichte dieser kompakten Binärsysteme: Denn Forschende wissen inzwischen dank der Gravitationswellen, dass es sie gibt. Warum es sie gibt, ist hingegen weniger klar.

Fotorealistische Grafik zweier sehr blauer Sterne im All, mit körniger Oberfläche und Eruptionen am Rand. Die zwei Sterne berühren sich.

Blaue Riesensterne: Nimm Zwei!

Sterne gibt es entweder im Miniaturformat: Von Roten Zwergen über die uns vertrauten sonnenähnlichen Sterne bis zu den geradezu überdimensionierten Gesellen: Blaue Riesen. Sie können einige hundert Mal so groß wie die Sonne sein. Zu einem Besuch wird abgeraten: In ihrer Umgebung geht es hoch her. Und doch haben wir den Blauen Riesen eine ganze Menge zu verdanken: den Kohlenstoff, aus dem das Leben besteht oder den Sauerstoff, den wir in jedem Moment atmen. Ohne Blaue Riesen gäbe es uns wahrscheinlich nicht.

Doch Blaue Riesen sind nicht nur recht selten, sondern es gibt sie auch nur für relativ kurze Zeit: Die Kernfusion in ihrem Innern hält nur wenige Millionen Jahre durch, bevor Blaue Riesen als Supernova explodieren. Und dann ist da auch noch die Tatsache, dass gerade diese riesigen Sterne üblicherweise nicht allein vorkommen, sondern fast immer einen Begleitstern haben. Und wenn der auch ein Blauer Riese ist, dann wird es richtig spannend!

In dieser Folge von AstroGeo erzählt Franzi die Geschichte der massereichsten Sterne im Universum: wie sie aussehen, warum ihre Entwicklung so spannend ist und was wir ihnen zu verdanken haben – vor allem, wenn sie im Doppelpack vorkommen. Plus Beobachtungstipps, wo und wie ihr selbst Blaue Riesen sehen könnt.

Sterne verstehen mit Lochkarten

Wie heiß ist es im Inneren der Sonne? Wie groß ist der Rote Zwerg von Nebenan? Und wie lange hat Beteigeuze ungefähr noch, bevor er als Supernova explodieren wird? Das alles lässt sich einfach ausrechnen – und zwar mit nur vier scheinbar einfachen Gleichungen. Das innere eines Sterns ist berechenbar, und das weit in die Vergangenheit und genauso in die Zukunft.

Aber natürlich ist im Universum nichts so einfach, wie es auf den ersten Blick scheinen mag, auch Sterne nicht. Denn um die Struktur und die Entwicklung von Sternen zu berechnen, kommt man mit Papier, Bleistift und Gehirnschmalz alleine nicht weiter. Deswegen waren schon die ersten Computer von großer Hilfe, selbst wenn die am Anfang noch einen ganzen Raum ausgefüllt haben und mit Lochkarten gefüttert wurden.

In dieser Folge des AstroGeo-Podcasts erzählt Franzi die Geschichte eines solchen „Rechenmaschinenprogramms“, das seit den 1960er-Jahren bis heute weiterentwickelt wird: einem Code, der Physikerinnen und Physikern verrät, wie es im Inneren eines Sterns aussieht und wie sich ein Stern entwickelt wird. Keine Sorge: Für den Genuss dieser Folge sind weder mathematische Fähigkeiten noch Programmierkenntnisse nötig.

Der Zwergplanet in voller Pracht: das weiß-beige Herz, rechtsseitig etwas runzelig, links daneben eine rötlich-dunkle Ebene mit größeren Kratern, im Norden weiß bis geblich vergletschert. Die um den Südpol liegenden Regionen liegen im Schatten.

Ein Herz und vier Sorten Eis

Pluto ist eine beliebte Welt. Spätestens seit am 14. Juli 2015 die NASA-Raumsonde New Horizons an dem Zwergplaneten vorbeirauscht war, flogen ihm die Herzen vieler Menschen zu. Es zeigte sich auch, dass auf seiner Oberfläche selbst ein Herz sitzt, wenn auch ein sehr kaltes. Denn die mittlere Temperatur auf Plutos Oberfläche mit seinem gewaltigen herzförmigen Gletscher aus Stickstoffeis liegt bei gerade einmal minus 229 °C.

Karl taucht in dieser Folge des Podcasts in die Geologie des Plutos ein. Schon lange vor dem Vorbeiflug von New Horizons gab es einige Kenntnisse über die ferne Welt. Doch erst die Daten der Sonde zeigten, wie dynamisch sich der Zwergplanet im Laufe eines 248 Erdjahre langen Sonnenumlaufs verändert. Gleich vier Eissorten spielen dabei eine wesentliche Rolle: Sie gleiten als Gletscher über die Oberfläche, sublimieren in eine dünne Atmsphäre, bilden steile Berghänge oder brechen aus Kryovulkanen als eisige Lava empor.

Eine hell leuchtende Akkretionsscheibe wie ein Wasserstrudel, die um ein Zentrum zu spiralisieren scheint. Im rechten Winkel dazu wird ein Jet entlang der Rotationsachse der Akkretionsscheibe, nach oben und unten hinausgeschossen.

Quasisterne in der Ferne

Sie sind heller als jeder Stern und halten länger durch als jede Supernova: Die allerhellsten Lichter am Himmel sind Quasare. Zwar war der Begriff „Quasar“ schnell gefunden, nachdem der allererste Kandidat – namens 3C 273 – in den 1960er-Jahren aufgestöbert worden war: „Quasar“ steht für „quasi-stellar radio source“, also: Sieht aus wie ein Stern, aber eben nur fast, und auch übrigens hauptsächlich im Radiobereich.

Doch was verbirgt sich eigentlich hinter den Quasaren? Die allerhellsten Objekte im Universum werden von den dunkelsten Objekten im Universum angetrieben: von supermassereichen Schwarzen Löchern, die sich in den Zentren von Galaxien verbergen.

Franzi erzählt die Geschichte, wie Quasare entdeckt wurden: Warum diese exotischen Objekte es schaffen, so hell zu leuchten, was die Expansion unseres Universums damit zu tun hat, warum Quasare nur eine Phase für eine Galaxie sind – und warum es für uns ziemlich praktisch ist, dass unsere eigene Galaxie derzeit keinen Quasar in ihrem galaktischem Zentrum beherbergt.