Alle Artikel in: Raumfahrt

Kometenbilder und offene Forschung

Seit über acht Monaten kreist Rosetta um den Kometen 67P/Tschurjumow-Gerasimenko. An Bord befinden sich zehn Instrumente, unter denen eines hervorsticht: Die Kamera OSIRIS füllt fast ein Viertel der wissenschaftlichen Nutzlast aus. Die hochaufgelösten Bilder von OSIRIS gehören wohl zu den öffentlich gefragtesten Daten von Rosetta. Ein Gespräch mit Holger Sierks, dem Instrumentenleiter für OSIRIS.

Philaes Magnetkompass

Vor fünf Monaten landete Philae auf einem Kometen, gerade 2 Tage, 7 Minuten und 56 Minuten später war alles vorbei. Philae hat in dieser Zeit viele Daten gesammelt. – Aber wo genau der Lander (nach zwei ungewollten Sprüngen) zum Stehen kam, ist bis heute ungeklärt.Ich sprach in Wien mit zwei Forschern darüber, inwiefern Philaes Position etwas genauer bestimmt werden konnte. Karl-Heinz Glaßmeier nutzte dazu ein im Herbst mit Rosetta entdecktes Signal, das die Magnetometer an Bord beider Sonden aufgefangen hatten. Und das diente jetzt als Trägersignal, um wie ein Magnetkompass Philaes Lage im Raum etwas genauer zu bestimmen. Tatsächlich geht es dabei aber auch um plasmaphysikalische Effekte im Kometenumfeld. Im Anschluss folgt ein zweites Interview mit Stefan Ulamec, dem Projektmanager von Philae. Er erzählt vom Stand bei der Suche nach Philae. Und er berichtet, wann genau der Lander vielleicht wegen der immer stärkeren Sonnenstrahlung aufwachen könnte.

Methan und organisches Material

Der Mars und die Erde sind keine Zwillinge. Während es dort nur trockene Wüsten und eine ungewöhnliche dünne Atmosphäre gibt, ist die Erde bewohnbar. Umso erstaunlicher war der Fund von Methangas in der Atmosphäre des Mars, der gerade zehn Jahre alt ist. Immerhin entweicht Methan auf der Erde neben Vulkanen auch vielen Mikroorganismen, Tieren und sogar Pflanzen. Wo genau das Marsmethan herstammt, ist bislang noch umstritten. Ein neuer Fund hat die Diskussion allerdings gerade weiter angeheizt: Der NASA-Rover Curiosity beobachtete einen rasanten Anstieg des Gases.

Ich habe deshalb das Thema mit einem Forscher diskutiert, der sich damit auskennt: Frank Keppler ist frisch berufener Heisenberg-Professor am Institut für Geowissenschaften der Universität Heidelberg. Er hat vor einigen Jahren die Methanemissionen von Pflanzen entdeckt und damit weltweit für Aufregung gesorgt. Er forscht auch zu Methanquellen auf dem Mars. Und er ist sehr vorsichtig, wenn es darum geht, über Leben auf dem Roten Planeten zu spekulieren.

Ozeanbildung ohne Kometen

Vier Monate umkreist Rosetta nun Tschurjumow-Gerasimenko. Die erste Kometenlandung ist Geschichte, der Lander Philae eingeschlafen. Die Muttersonde kreist aber weiter – und wird das wohl noch über ein Jahr lang tun. Nun gibt es erste handfeste Ergebnisse von ihr: Das Massenspektrometer ROSINA an Bord von Rosetta hat so etwas wie den Fingerabdruck des Wassers gemessen. Das Resultat scheint überraschend: Das Wasser der Erde kam kaum von einem Kometen wie Tschuri, vermutlich spielten Kometen als Wasserlieferanten überhaupt keine Rolle.

Um die neuen Daten zu verstehen, habe ich mit Kathrin Altwegg gesprochen. Sie ist Professorin in der Abteilung für Weltraumforschung und Planetologie der Universität Bern. Und sie ist verantwortlich für ROSINA: Das Rosetta Orbiter Spectrometer for Ion and Neutral Analysis. Es besteht aus zwei Massenspektrometern und einem Gasdrucksensor.

Die erste Kometenlandung

Sechs Tage später traf ich mich mit Fred Goesmann für ein Interview: Er ist leitender Wissenschaftler für das Instrument COSAC auf Philae (Cometary Sampling and Composition Experiment). Es ist so etwas wie die Nase der Sonde: Sie kann die vielen organischen Verbindungen im Kometenmaterial untersuchen, von denen wir längst noch nicht alle kennen. COSAC ist somit auch eines der komplexesten Instrumente an Bord – samt einem Gaschromatographen und einem Massenspektrometer, wofür zuvor das Material in winzigen Öfchen gekocht werden muss.

Fred Goesmann erzählt, wie er die kurze Missionszeit von Philae erlebte, was er in seinen (längst noch nicht fertig ausgewerteten) Daten erwartet – und ob Philae vielleicht wieder aufwachen könnte.

Strahlung für die Raumfahrt

Der Weltraum ist gefährlich und eine Reise dorthin ist riskant. Das war so, als der erste Mensch ins All startete – und es ist bis heute so. Selbst unbemannte Satelliten und Raumsonden sind ständig bedroht: Extreme energiereiche Teilchen von der Sonne und tief aus dem Universum können immense Schäden anrichten. Elektronische Bauteile müssen entsprechend gehärtet werden, um unter dem Teilchenstrom nicht schnell Schaden zu nehmen.

Dabei ist es bis heute aber nicht möglich, in irdischen Labors die kosmische Strahlung korrekt nachzubilden. Zwar testen Raumfahrtingenieure die Bordcomputer und Sensoren von Satelliten ausgiebig. Kosmische Strahlung wirklich im Labor zu erzeugen, ist aber nicht möglich.

Darüber spreche mit Oliver Karger, Doktorand am Institut für Experimentalphysik der Universität Hamburg. Er arbeitet an einer neuen Methode, kosmische Strahlung mit Lasern im Labor nachzubilden. Und er will dazu beitragen, dass Satelliten und Sonden bald deutlich realistischer getestet werden können, um Missionen eines Tages vielleicht zuverlässiger und langlebiger zu machen.

Kosmische Chemie

Millionen Objekte bevölkern unser Sonnensystem: von winzigen Asteroiden über mittelgroße Gesteinsplaneten bis zu den gewaltigen Gasriesen. All das ist vor langer Zeit aus einer Urwolke entstanden und diese Einsicht ist schon über 200 Jahre alt. In den letzten Jahrzehnten haben Forscher aber gelernt, aus der Chemie von Meteoriten deutlich mehr herauszulesen. Die Geochemie eröffnet uns einen tiefen Blick in die Geschichte des Sonnensystems – bis zur Entstehung des Lebens.Mit Mario Trieloff von der Universität Heidelberg wage ich einen Ritt durch die letzten 4,6 Milliarden Jahre, alle Körper des Sonnensystems und die Innereien der Erde. Er ist Professor am Institut für Geowissenschaften und leitet die Forschungsgruppe Geo- und Kosmochemie.

Rosettas Komet

Rosetta ist ein Novum: Es ist der erste Versuch, eine Raumsonde um einen Kometen kreisen zu lassen, um schließlich einen Lander auf ihm abzusetzen. Rosetta ist auch einer der ersten Versuche Europas, in der Raumfahrt mal alleine etwas ganz Neues zu versuchen.

Was dabei passieren kann: Es passieren unvorhergesehene Dinge. Etwa wird Rosettas Zielkomet 67P/Tschurjumov-Gerasimenko wohl schon etwas früher aktiv als geglaubt. Er pustet also schon eher Gas und Staubpartikel ins All, als Vorstufe zu seinem Schweif.

Das ist eigentlich keine Neuigkeit: Im August 2013 habe ich darüber bereits mit Colin Snodgrass und Hermann Böhnhardt vom Max-Planck-Institut für Sonnensystemforschung in Katlenburg-Lindau gesprochen. Das volle Interview ist aber weiter aktuell – gerade so kurz nach Rosettas beendetem Winterschlaf.

Shutdown

Die Vereinigten Staaten sind die größte Wissenschaftsnation der Welt. Der Shutdown im US-Haushaltsstreit legt nun nicht nur viele Ämter lahm, sondern auch Teile der Forschungslandschaft.

Daher habe ich kurz mit der Geologin Professor Dawn Sumner von der Universität von Kalifornien in Davis gesprochen. Sie steckt in zwei wichtigen Forschungsprojekten: Sie ist seit Jahren in diversen Teams um den Rover Curiosity aktiv. Sie half bei der Suche der Landestelle und beteiligt sich heute als Langzeitplanerin. Sie arbeitet auch maßgeblich an der geologischen Kartierung des Galekraters mit. Außerdem hat sie eine Expedition in die Antarktis vorbereitet, die eigentlich jetzt beginnen sollte.