Alle Artikel mit dem Schlagwort: Galileo Galilei

Düstere Landschaft: Ein Bergrücken, der dunkel, aber leicht rötlich erscheint, darüber ein grauer Himmel mit diffusen Wolkenformationen.

Von Marskanälen zum Wolkenatlas: Dünne Luft auf dem Mars

Am 15. Juli 1965 kommt es in den Räumen des Jet Propulsion Laboratory der NASA in Kalifornien zu einem Showdown: Drei Männer betrachten eine der ersten Aufnahmen der Marsoberfläche, welche die Raumsonde Mariner 4 nur wenige Stunde zuvor beim Vorbeiflieg aus der Nähe gemacht hatte. Ein Foto vom Mars – eigentlich ein großartiger Erfolg für die Wissenschaft! Und doch war jene Aufnahme eine riesige Enttäuschung – denn ein Bild sagt mehr als tausend Worte, und jenes Bild der Marsoberfläche sagte den NASA-Vertretern: Der Mars ist ganz anders als gedacht – und vor allem ist er kalt und tot. Das Bild zeigte, dass es wohl kein weit verbreitetes Leben auf dem Mars gibt, was vor allem mit seiner Atmosphäre zusammenhängt.

In dieser Folge erzählt Karl eine kleine Geschichte der Mars-Atmosphäre. Die Astronomen der Antike sahen beim Mars zunächst nicht mehr als einen rötlichen Wandelstern, der in Schleifen übers Firmament läuft. Und während auch die ersten Astronomen der Neuzeit nur wenige Details des Planeten in Erfahrung bringen konnten, so waren sie doch überzeugt: Der Mars ist eine belebte Welt, die der Erde ähneln sollte.

Doch bis ins 20. Jahrhundert hinein wussten Forscherinnen und Forscher lediglich: Die Tage auf dem Mars sind vergleichbar lang wie auf der Erde (24 Stunden und 37 Minuten), der Planet besitzt vermutlich Polkappen und Jahreszeiten. Der italienische Astronom Giovanni Schiaparelli hatte im 19. Jahrhunderte lange Linien beschrieben, die er canali nannte und die folgende Generationen über die Möglichkeit einer marsianischen Zivilisation spekulieren ließen. Doch die Voraussetzung für solches Leben auf dem Mars wäre, dass diese Außerirdischen Luft zum atmen hätten. Die Aufnahmen der NASA-Sonde Mariner 4 aus dem Jahr 1965 bereitete all diesen Mutmaßungen ein abruptes Ende: Auf ihnen erschien der Rote Planet als tote, kalte und tiefgefrorene Welt mit einer extrem dünnen Atmosphäre.

Dass in der kaum vorhandenen Marsluft dennoch etwas passiert, wurde zwar früh erkannt, war aber nie genauer untersucht worden. Marsianische Wolken bestehen aus Eiskristallen und waren eher ein Störfaktor für Kameras, die eigentlich Krater, Canyons oder Flusstäler der festen Oberfläche fotografieren sollten. Erst 2018 gibt ein spanischer Doktorand Anlass, die Marswolken genauer zu untersuchen. Jorge Hérnandez-Bernal findet am Riesenvulkan Arsia Mons eine extrem lange Wolke, die über die letzten Jahrzehnte immer zu einer bestimmten Jahreszeit wiederkehrt.

Diese Entdeckung von Hérnandez-Bernal motivierte ein Team um Daniela Tirsch vom Institut für Weltraumforschung des Deutschen Zentrums für Luft- und Raumfahrt genauer nachzusehen. Die europäische Raumsonde Mars Express hatte seit 2003 tausende Bilder gemacht. Und damit gelang etwas, was sich die NASA-Mitarbeitenden aus dem Jahr 1965 kaum hätten vorstellen können: der allererste Wolkenatlas einer außerirdischen Welt.

Zwei Spiralgalaxien befinden sich nahe beieinander. Ihre Spiralarme scheinen sich jeweils schon nach der anderen Galaxie auszustrecken.

Sterneninseln auf Kollisionskurs: Wann trifft die Andromeda-Galaxie die Milchstraße?

Als der fränkische Astronom Simon Marius im Jahr 1612 erstmals sein Fernrohr auf einen nebligen Fleck im Sternbild Andromeda richtet, kann er noch nicht ahnen, was er da eigentlich sieht: Marius beschreibt „schimmernde Strahlen, die um so heller werden, je näher sie dem Zentrum sind.“ Den Lichtglanz im Zentrum erscheint dem Astronomen wie „wenn man aus großer Entfernung eine brennende Kerze durch ein durchscheinendes Stück Horn betrachtet“. Damit ist wohl Simon Marius der erste Astronom, der den Andromedanebel durch ein Fernrohr beobachtete.

Spätere Beobachtungen mit besseren Fernrohren und Teleskopen ergeben, dass dieser Andromedanebel spiralförmig ist. Und im Jahr 1912, fast genau dreihundert Jahre nach Simon Marius, richtet der Astronom Vesto Slipher sein Teleskop gen Andromedanebel und findet dabei heraus: Dieser recht hübsche Spiralnebel kommt mit Karacho auf uns zugeflogen: Slipher ermittelte für den Nebel eine sogenannte Radialgeschwindigkeit von 300 Kilometern pro Sekunde.

Heutzutage wissen wir, dass der Andromedanebel überhaupt kein Nebel ist – sondern eine eigenständige Sterneninsel. Sie ist also eine Galaxie genau wie unsere Milchstraßeund wie sie ein Teil der Lokalen Gruppe, gehört somit zu unserer unmittelbaren kosmischen Nachbarschaft. Die Andromedagalaxie ist derzeit rund 2,5 Millionen Lichtjahre von der Milchstraße entfernt. Allerdings: Diese Entfernung wird immer geringer, denn wegen ihrer hohen Radialgeschwindigkeit scheint es so, als würde die Andromedagalaxie direkt auf die Milchstraße zufliegen.

Deshalb gilt es seit fast einem Jahrhundert eigentlich als ausgemachte Sache, dass die Andromedagalaxie und die Milchstraße irgendwann zusammenstoßen und miteinander verschmelzen werden: Aus den zwei Spiralgalaxien würde so eine einzige, größere elliptische Galaxie werden.

Und doch war und ist noch vieles unklar bei dieser potenziellen kosmischen Kollision: Wird es einen frontalen Zusammenstoß geben? Oder eher eine Art Streifschuss? Oder fliegt die Andromedagalaxie auch einfach an der Milchstraße vorbei?

In dieser Folge erzählt Franzi von der lange erwarteten Verschmelzung der Milchstraße mit der Andromedagalaxie – und was diese mit galaktischer Eschatologie, Tangentialgeschwindigkeiten und Messunsicherheiten zu tun hat.

Episodenbild: NASA, ESA, STScI, Till Sawala (University of Helsinki), DSS, J. DePasquale (STScI)

Das diffus leuchtende Band der Milchstraße, über dem viele, chaotisch wirkende weiße Striche liegen. Wie eine zerkratzte Oberfläche.

Vom Mittelpunkt zum Mitläufer: Wie wir unseren Platz im Kosmos fanden

Und sie bewegt sich doch: Diese geflügelten Worte werden Galileo Galilei zugeschrieben. Ob er sie je geäußert hat, ist zwar fraglich – doch dass er ihnen zugestimmt hätte, steht außer Zweifel. „Sie“ ist unsere Erde. Jahrtausendelang hatte das geozentrische Weltbild sie starr und unbewegt in das Zentrum des Universums gesetzt: Alle übrigen Planeten, die Sonne, der Mond und der Fixsternhimmel sollten sich um sie drehen.

Galileo Galilei hingegen hat als früher Verfechter ein heliozentrisches Weltbild vertreten: eines, dass die Erde von ihrem Ehrenplatz im Mittelpunkt des Universums schubst und an diese Stelle die Sonne setzt. Demnach würde sich die Erde um die Sonne drehen – und sich eben doch bewegen. Heutzutage wissen wir, dass Galilei und andere frühe Vertreter dieses Weltbilds Recht behalten sollten – nur: Wie konnten sie überhaupt beweisen, dass sich die Erde um die Sonne dreht?

In dieser Folge von AstroGeo erzählt Franzi die Geschichte einer Suche, die Jahrtausende gedauert hat: die nach der stellaren Parallaxe. Diese scheinbare Bewegung von Sternen im Laufe eines Erdjahres ist nicht nur ein Beleg dafür, dass sich die Erde um die Sonne dreht – sie ist bis heute die einzige Möglichkeit, die Entfernung zu Sternen direkt zu vermessen und damit die Grundlage so ziemlich all unseres Wissens über den Weltraum und unser Universum.

Der erste Exo-Ozean

Die Erde ist der blaue Planet, dabei ist sie verglichen mit vielen anderen Welten überraschend trocken. Nur 0,2 Prozent der Masse der Erde bestehen aus Wasser. Besonders Monde jenseits der Marsbahn besitzen häufig eine dicke Kruste auf Eis. Dazu gehören die Jupitermonde Europa, Ganymed und Kallisto, der Saturnmond Enceladus oder der Neptunmond Triton. Was sich unter dem Eis befindet, war lange völlig unklar.

Karl erzählt in dieser Folge, wie der erste Ozean außerhalb der Erde auf Europa am Jupiter entdeckt wurde. Europa ist den Astronomen schon seit über 400 Jahren bekannt. Dennoch brauchte es Jahrhunderte des wissenschaftlichen Fortschritts, viele Jahre von Beobachtungen und mehrere Raumsonden, unter die Eisschicht zu blicken. Unter mehreren Kilometern Eis könnte es von Leben wimmeln.