In dieser Folge widmen sich Franzi und Karl dem Feedback zu den letzten drei Geschichten im AstroGeo Podcast. Hörer berichten, wo sie AstroGeo gehört haben, etwa bei einer Fahrradtour durch Frankreich oder im Zug bei der Fahrt quer durch Europa.
In Folge 122 ging es um Seen tief unter dem Gletschereis der Antarktis und von Grönland, die künftig zum Problem werden könnten. Karl hatte erzählt, ob man einen rutschenden Gletscher trockenlegen könnte, indem man den darunterliegenden See abpumpt. Dazu gibt es eine korrigierte Zahl: Demnach wäre für die kritischsten Gletscherzungen „nur“ zehnmal mehr Flüssigkeit in Grönland und der Antarktis abzupumpen als heute an Erdöl an die Oberfläche gefördert wird (knapp 5 km³ Erdöl pro Jahr vs. 50 km³ Schmelzwasser pro Jahr). Darüber hinaus sprechen Franzi und Karl über den Hinweis, dass ein steigender Meeresspiegel heute noch das geringere Problem ist: Viele Städte sinken derzeit ab, weil unter ihnen zu viel Grundwasser gefördert wird.
In den Rückmeldungen zu Franzis Folgen über Schwarze Löcher (AG123 und AG124) überwiegt begeistertes Lob: Viele finden die komplexen Inhalte zur Allgemeinen Relativitätstheorie und Quantenphysik hervorragend aufbereitet, manche wünschen sich jedoch mehr Vereinfachung. Es gibt eine physikalische Ergänzung zur Natur von Singularitäten und Franzi erklärt, warum Schwarze Löcher „keine Haare“ haben. Am Rande geht es auch um die Allgemeine Relativitätstheorie und die Frage, durch welche Effekte die hochgenauen Atomuhren auf Satelliten langsamer gehen als jene auf der Erde.
Weitere Rückmeldungen betreffen alte Folgen – etwa Beobachtungen zur Nova in der Nördlichen Krone. Die Prognose aus Folge AG091 über einen Ausbruch im Jahr 2024 ist nicht eingetreten, was vermutlich an allzu schlechten Basisdaten liegt. Somit warten wir alle weiterhin auf den nächsten Ausbruch der Nova T Coronae Borealis.
Zuletzt sprechen Franzi und Karl über andere Geologie-Podcasts. Karl kennt fast nur englischsprachige Produktionen und bittet um Mithilfe.
Heutzutage mögen Schwarze Löcher selbstverständlicher Teil des Weltalls sein, doch das war nicht immer so. Nachdem der deutsche Astrophysiker Karl Schwarzschild zu Beginn des 20. Jahrhunderts gezeigt hatte, dass Schwarze Löcher als Lösung der Einsteinschen Feldgleichungen der Allgemeinen Relativitätstheorie herauskommen, hatten Physiker in den folgenden Jahrzehnten nur ein Bestreben: Wie werden sie die merkwürdigen Objekte wieder los?
Karl Schwarzschild hatte berechnet, dass ein Stern gar sonderbare Dinge mit der Raumzeit anstellt, wenn sein Volumen auf einmal so drastisch schrumpft, dass der Radius des Sterns unter dem sogenannten Schwarzschild-Radius liegt: Dann nämlich gäbe es jenseits dieses Radius` kein Entkommen mehr, hätten Licht oder Materie ihn einmal überquert. Die Raumzeit wäre zu stark gekrümmt, und im Inneren lauerte die Singularität: ein Ort mit unendlicher Dichte und noch vielerlei anderen Unendlichkeiten, über die sich selbst Albert Einstein am liebsten gar keine Gedanken machen wollte: Für ihn wäre es eine „Katastrophe“, wäre der Radius eines Körpers kleiner als sein Schwarzschild-Radius – würde ein Himmelskörper also zu dem werden, was wir heute als Schwarzes Loch bezeichnen.
Da traf es sich gut, dass der Schwarzschild-Radius eines Sterns recht winzig ist: Bei der Sonne beträgt er nur wenige Kilometer. Und es sollte doch unmöglich sein, dass ein Stern einfach so zusammenstürzt und kleiner wird als dieser Radius – so glaubten viele Forschende?
Tatsächlich würde ein Stern wie unsere Sonne einfach so unter ihrer eigenen Schwerkraft zusammenstürzen – wenn nicht der Strahlungsdruck der Kernfusion in ihrem Inneren einen Gegendruck erzeugen würde. Und das heißt: Vorerst bleibt die Sonne so groß wie sie ist. Aber was passiert eigentlich, wenn der Brennstoff eines Sterns am Ende seiner Entwicklung verbraucht ist? Was könnte einen solchen Stern davon abhalten, zu dem so „katastrophalen“ Schwarzen Loch zu kollabieren?
In dieser Folge des AstroGeo-Podcasts erzählt Franzi, wie Weiße Zwerge und Neutronensterne den Kollaps eines Sterns zunächst aufhalten können – und wie sie deshalb das Universum fast vor der Existenz der Schwarzen Löcher bewahrt hätten.
Im November 1915 hält Albert Einstein vier Vorträge an der Preußischen Akademie der Wissenschaften in Berlin. In diesen Vorträgen stellt er seinem Publikum die Allgemeine Relativitätstheorie vor, an der er jahrelang getüftelt hatte. Mit dieser Theorie kann Einstein beschreiben, wie Materie, Raum und Zeit wechselwirken. Dabei schafft er kurzerhand eine Kraft unseres Universums ab: die Schwerkraft.
Bei Isaac Newton war alles alles noch viel einfacher gewesen: Laut dem Briten ist die Schwerkraft, wie der Name schon sagt, eine Kraft. Diese wirkt zum Beispiel zwischen zwei Massen anziehend. Mit den Newtonschen Gravitationsgesetzen ließ sich zunächst wunderbar erklären, warum ein Apfel vom Baum fällt oder warum die Erde um die Sonne kreist.
Doch mit der Allgemeinen Relativitätstheorie bereitet Einstein der Schwerkraft nun ein Ende: Laut ihm handelt es sich dabei lediglich um einen Effekt der gekrümmten Raumzeit. Frei nach dem Physiker John Wheeler übersetzt könnte man die Allgemeine Relativitätstheorie so zusammenfassen: Die Materie sagt der Raumzeit, wie sich zu krümmen hat, und die gekrümmte Raumzeit sagt der Materie, wie sich zu bewegen hat. Ein Apfel fällt also nicht deshalb vom Baum, weil er die Effekte der Schwerkraft verspürt, sondern weil er dem kürzesten Weg in der gekrümmten Raumzeit folgt.
Doch war die Allgemeine Relativitätstheorie im Jahr 1915 nicht nur konzeptionell ungeheuerlich, sondern auch mathematisch: Ihre Gleichungen sind so kompliziert, dass Einstein selbst zunächst davon überzeugt ist, dass es unmöglich sei, exakte Lösungen für sie zu finden.
Wie praktisch, dass sich bei einem seiner Vorträge ein Mensch befand, dem genau das nur wenig später gelingen sollte – und das, während der als Soldat im Ersten Weltkrieg an der Front stationiert war. Karl Schwarzschild war Physiker und Astronom. Außerdem beherrschte er praktischerweise genau jene mathematischen Fähigkeiten, die benötigt wurden, um eine exakte Lösung für die Einstein’schen Feldgleichungen zu finden. Diese Gleichungen brachten jedoch einen seltsamen Aspekt zu Tage, der zeigte: Es könnte so etwas wie Schwarze Löcher geben.