Mit einem Happs ist alles im Schlund: Wenn zwei Schwarze Löcher miteinander verschmelzen, ist das ein gewaltiges kosmisches Ereignis, das die ganze Raumzeit erbeben lässt. Physikerinnen und Physiker freuen sich dann über die dabei entstehen Gravitationswellen, jenes Zittern der Raumzeit, das erstmals 2015 mit dem Gravitationswellendetektor LIGO gemessen wurde. Inzwischen ist die Entdeckung von solchen Verschmelzungen fast Routine geworden, über 90 Ereignisse zählt der dritte Gravitationswellenkatalog.
Doch schon das erste entdeckte Gravitationswellensignal namens GW150904 gab Wissenschaftlerinnen und Wissenschaftlern mehrere Rätsel auf: Die beiden Schwarzen Löcher, die da miteinander verschmolzen, waren eigentlich viel zu massereich, um existieren zu dürfen. Und kaum hatte man sich darüber Gedanken gemacht, gab es schon das nächste Problem: Wie schafft es dieses kompakte Doppelsystem, sich überhaupt nahe genug zu kommen, um miteinander zu verschmelzen, ohne sich vorher schon zu zerstören? Und dazu müsste dieser kosmische Annäherungsversuch eigentlich länger brauchen, als das Universum alt ist.
Franzi erzählt Karl in dieser Podcast-Folge die Geschichte dieser kompakten Binärsysteme: Denn Forschende wissen inzwischen dank der Gravitationswellen, dass es sie gibt. Warum es sie gibt, ist hingegen weniger klar.
Sterne gibt es entweder im Miniaturformat: Von Roten Zwergen über die uns vertrauten sonnenähnlichen Sterne bis zu den geradezu überdimensionierten Gesellen: Blaue Riesen. Sie können einige hundert Mal so groß wie die Sonne sein. Zu einem Besuch wird abgeraten: In ihrer Umgebung geht es hoch her. Und doch haben wir den Blauen Riesen eine ganze Menge zu verdanken: den Kohlenstoff, aus dem das Leben besteht oder den Sauerstoff, den wir in jedem Moment atmen. Ohne Blaue Riesen gäbe es uns wahrscheinlich nicht.
Doch Blaue Riesen sind nicht nur recht selten, sondern es gibt sie auch nur für relativ kurze Zeit: Die Kernfusion in ihrem Innern hält nur wenige Millionen Jahre durch, bevor Blaue Riesen als Supernova explodieren. Und dann ist da auch noch die Tatsache, dass gerade diese riesigen Sterne üblicherweise nicht allein vorkommen, sondern fast immer einen Begleitstern haben. Und wenn der auch ein Blauer Riese ist, dann wird es richtig spannend!
In dieser Folge von AstroGeo erzählt Franzi die Geschichte der massereichsten Sterne im Universum: wie sie aussehen, warum ihre Entwicklung so spannend ist und was wir ihnen zu verdanken haben – vor allem, wenn sie im Doppelpack vorkommen. Plus Beobachtungstipps, wo und wie ihr selbst Blaue Riesen sehen könnt.
Wie heiß ist es im Inneren der Sonne? Wie groß ist der Rote Zwerg von Nebenan? Und wie lange hat Beteigeuze ungefähr noch, bevor er als Supernova explodieren wird? Das alles lässt sich einfach ausrechnen – und zwar mit nur vier scheinbar einfachen Gleichungen. Das innere eines Sterns ist berechenbar, und das weit in die Vergangenheit und genauso in die Zukunft.
Aber natürlich ist im Universum nichts so einfach, wie es auf den ersten Blick scheinen mag, auch Sterne nicht. Denn um die Struktur und die Entwicklung von Sternen zu berechnen, kommt man mit Papier, Bleistift und Gehirnschmalz alleine nicht weiter. Deswegen waren schon die ersten Computer von großer Hilfe, selbst wenn die am Anfang noch einen ganzen Raum ausgefüllt haben und mit Lochkarten gefüttert wurden.
In dieser Folge des AstroGeo-Podcasts erzählt Franzi die Geschichte eines solchen „Rechenmaschinenprogramms“, das seit den 1960er-Jahren bis heute weiterentwickelt wird: einem Code, der Physikerinnen und Physikern verrät, wie es im Inneren eines Sterns aussieht und wie sich ein Stern entwickelt wird. Keine Sorge: Für den Genuss dieser Folge sind weder mathematische Fähigkeiten noch Programmierkenntnisse nötig.